博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Differences Between a BI/Data Warehouse System and an OLTP System
阅读量:7197 次
发布时间:2019-06-29

本文共 1181 字,大约阅读时间需要 3 分钟。

. Level of detail: The OLTP layer stores data with a very high level of detail, whereas data in the Data Warehouse is compressed for high-performance access (aggregation).

. History: Archiving data in the OLTP area means it is stored with minimal history. The Data Warehouse area requires comprehensive historical data.

. Changeability: Frequent data changes are a feature of the operative area, while in the Data Warehouse, the data is frozen after a certain point for analysis.

. Integration: In contrast to the OLTP environment, requests for comprehensive, integrated information for analysis isare very high.

. Normalization: Due to the reduction in data redundancy, normalization is very high for operative use. Data staging and lower performance are the reasons why there is less normalization in the Data Warehouse.

. Read access: An OLAP environment is optimized for read access. Operative applications (and users ) also need to carry out additional functions regularly, including change, insert, and delete.

 

 
专注于企业信息化,最近对股票数据分析较为感兴趣,可免费分享股票个股主力资金实时变化趋势分析工具,股票交流QQ群:457394862
分类: 
本文转自沧海-重庆博客园博客,原文链接:http://www.cnblogs.com/omygod/archive/2011/09/06/2169321.html,如需转载请自行联系原作者
你可能感兴趣的文章
CFS终于敲定了
查看>>
SpringMVC权限管理
查看>>
java 多线程之取消与关闭
查看>>
网络研讨会的邀请:网络公开课_守护好数据库的备份信息
查看>>
使程序在Linux下后台运行
查看>>
关于赋值语句的一点看法
查看>>
windows版本的Emacs 无法显示图片的解决方法
查看>>
Discuz! 经典加密解密函数(带详解)
查看>>
JVM内存结构和6大区域
查看>>
centos6 Docker桥接到主机所在的内网
查看>>
C++ 动态内存
查看>>
网络安装CentOS5.5Final
查看>>
网络相关的配置文件
查看>>
easy UI datagrid加载的时候默认不加载数据
查看>>
Ethereum 客户端Parity编译
查看>>
Storm 【开发细节】 - geting Start with Storm
查看>>
View requires API level 14 (current min is 8)
查看>>
flannel集群安装
查看>>
android 的viewpager如何实现左右循环
查看>>
易宝典文章——玩转Office 365中的Exchange Online服务 之二十三 实现基于IP地址的邮件过滤...
查看>>